# Actel Space-Flight FPGA Product Update and Roadmap



Ken O'Neill Director, Mil / Aero Product Marketing

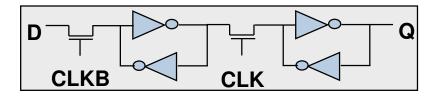
# **Actel Company Overview**



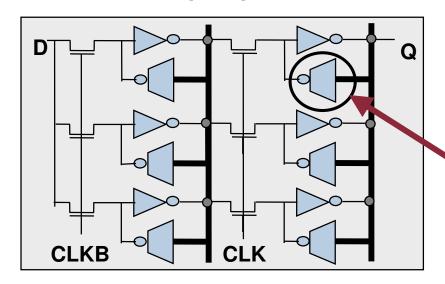
## **■ Established FPGA Supplier**

- First FPGA shipped 1988
- First space FPGA shipped 1992
- \$191M in sales in 2006
- More than 580 employees
- Fabless company
- #1 flash FPGA supplier
- #1 antifuse FPGA supplier
- ~35% of revenue from mil / aero FPGAs






# **SEU-Enhanced Flip-Flops**




#### **■** Foundation for Actel RTSX-SU and RTAX-S FPGAs

#### **Standard Flip-flop**



#### **SEU-Enhanced Flip-flop**



#### **Actel Advantage**

- 100% gate availability no gate loss to TMR implementation
- Upsets due to single ion strike voted out by the unaffected latches
- Voting the feedback paths prevents the flip flop from changing state
- Transparent to user, no special skill or knowledge needed

Voter Gate



# **RTSX-SU Family**



#### ■ RTSX-SU Features

- Designed specifically for Space Applications
- Up to 2,012 SEU Hardened Flip-Flops eliminate user-designed TMR
- Single Event Latch-up Immune
- Supports Hot-Swapping and Cold Sparing
- Configurable I/O support CMOS, TTL, LVTTL, and 3.3V/5.0V PCI
- Secure programming technology prevents reverse engineering
- Pin Compatible with commercial SX-A devices for easy prototyping
- QML Certified Devices

#### ■ High frequency SET testing

- Tested to 100 MHz at TAMU with NASA GSFC, Oct 2005
- Report available from Actel

#### ■ Antifuse Reliability

 Aerospace FIT calculator projects 40 FIT for RTSX72SU, typical design

|                  | RTSX32SU                                    | RTSX72SU                                    |
|------------------|---------------------------------------------|---------------------------------------------|
| System Gates     | 48K                                         | 108K                                        |
| Logic<br>Modules | 2,880                                       | 6,048                                       |
| Registers        | 1,080                                       | 2,016                                       |
| Max User I/O     | 224                                         | 353                                         |
| Packages         | 84-CQFP<br>208-CQFP<br>256-CQFP<br>256-CCLG | 208-CQFP<br>256-CQFP<br>624-CCGA<br>624-LGA |

Space FPGA Update Nov 2007

# Success in Space - RTSX-SU



#### Mars Reconnaissance Orbiter Launched August 2005



**Actel RTSX-SU On Board** 

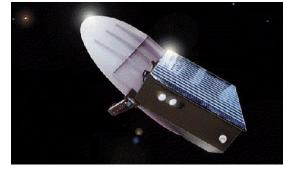
GPS 2R-M Program
First Launch Sept 2005



**Actel RTSX-SU On Board** 

Galileo GIOVE-A Launched Dec 2005




**Actel RTSX-SU On Board** 

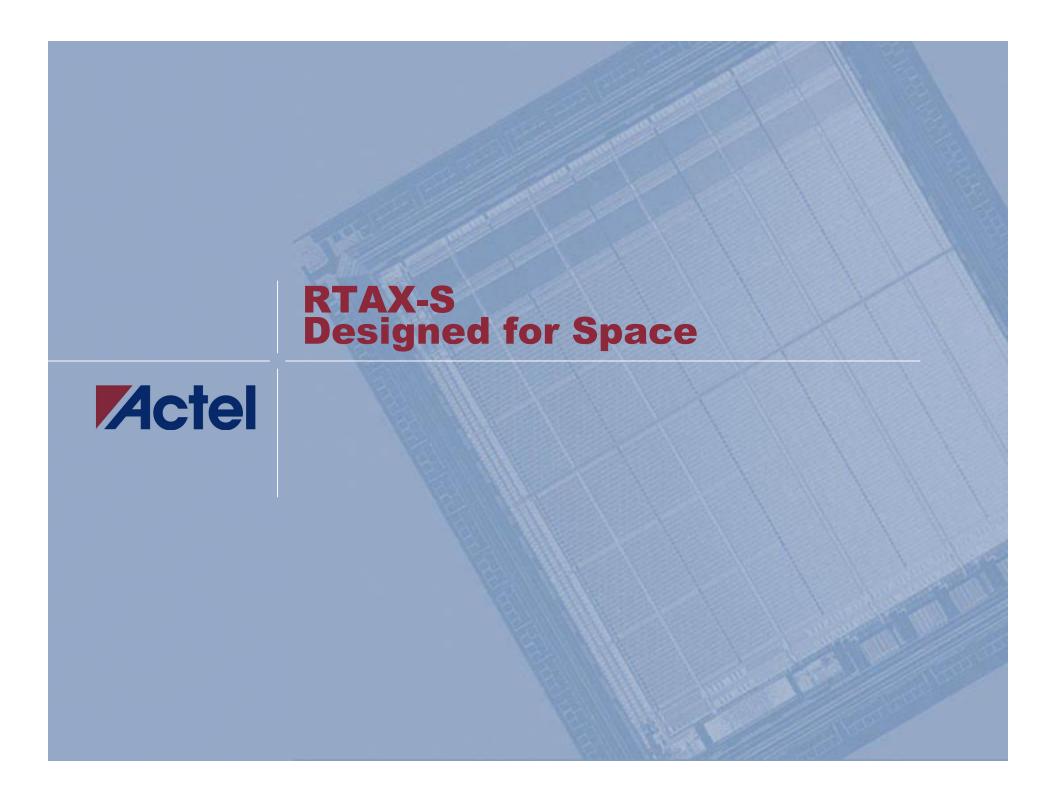
New Horizons
Launched Jan 2006



**Actel RTSX-SU On Board** 

SAR-Lupe 1 and 2
First Launch Dec 2006



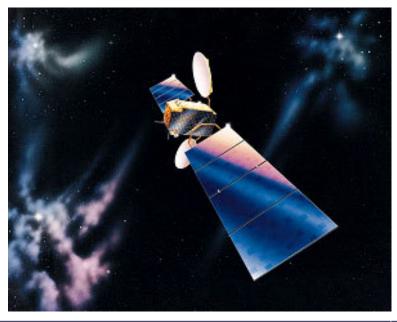

**Actel RTSX-SU On Board** 

TerraSar X
Launched June 2007



**Actel RTSX-SU On Board** 

■ Many more programs preparing to fly RTSX-SU




# **RTAX-S**



## ■ Radiation-tolerant FPGA alternative to RH ASICs

- High density up to 2 million system gates (approximately 250,000 ASIC gates)
- Five times larger than previous largest space FPGA
- Designed for space Single Event Upset (SEU) enhancements
- 0.15µm, 7-layer metal CMOS with Antifuse, manufactured at UMC
- Embedded block RAM
- Multiple Flexible I/O standards
- Live at Power-up (LAPU)
- Single chip
- Low power consumption



# **RTAX-S FPGA Family**



|                     | RTAX250S                        | RTAX1000S                | RTAX2000S                                             | RTAX4000S           |
|---------------------|---------------------------------|--------------------------|-------------------------------------------------------|---------------------|
| Dedicated Registers | 1,408                           | 6,048                    | 10,752                                                | 20,160              |
| I/O Registers       | 744                             | 1,548                    | 2,052                                                 | 2,520               |
| Total Modules       | 4,224                           | 18,144                   | 32,256                                                | 60,480              |
| RAM Blocks          | 12                              | 36                       | 64                                                    | 120                 |
| Total RAM Bits      | 54K                             | 162K                     | 288K                                                  | 540K                |
| Max User I/Os       | 248                             | 516                      | 684                                                   | 840                 |
| Packages            | 208-CQFP<br>352-CQFP            | 352-CQFP<br>624-CCGA/LGA | 256-CQFP<br>352-CQFP<br>624-CCGA/LGA<br>1152-CCGA/LGA | 352-CQFP            |
|                     |                                 |                          |                                                       | 1272-CCGA/LGA       |
| Status              | QUALIFIED SILICON NOW SHIPPING! |                          |                                                       | QUAL IN<br>PROGRESS |

Space FPGA Update Nov 2007

# **RTAX-S Radiation Data**



#### ■ Single-event Latch-up (SEL)

- Testing performed up to LET 117 MeV-cm<sup>2</sup>/mg (125°C)
- No SEL observed; No control logic upset observed

#### ■ R-Cell Single-event Upset (SEU)

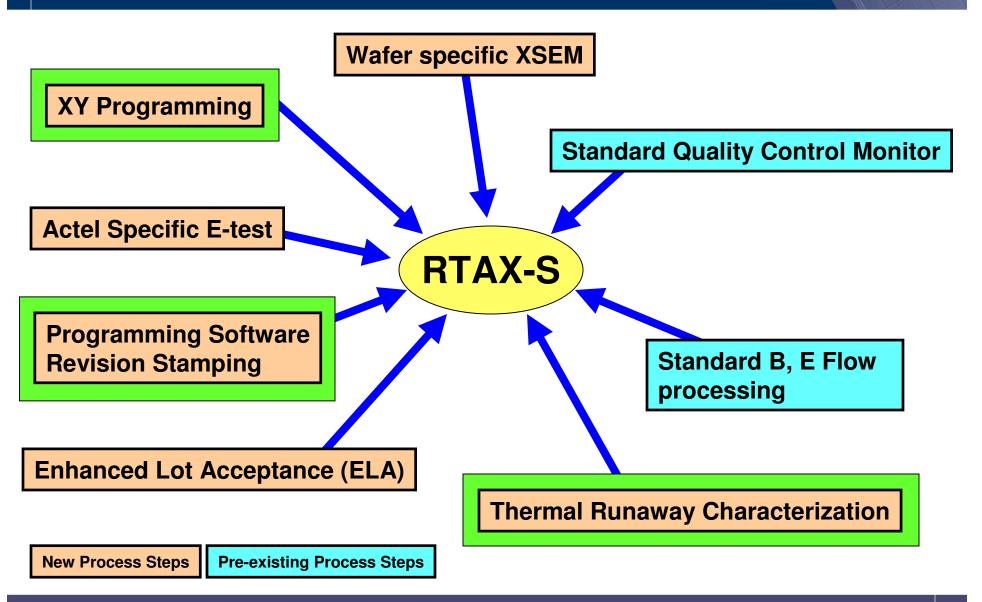
- LET<sub>TH</sub> in excess of 37 MeV-cm<sup>2</sup>/mg
- Cross-section < 1E<sup>-9</sup> cm<sup>2</sup>
- SEU per R-Cell < 4E<sup>-11</sup> Errors/bit-day (worst case GEO)

#### **■ Memory SEU**

- Cross section / word ~ 4E<sup>-9</sup> cm<sup>2</sup>
  - **♦** EDAC operational, background scrubbing at 2MHz
- SEU < 1E<sup>-10</sup> upsets/bit-day (worst case GEO)

#### **■** Single-event Transient (SET)

- High frequency testing to 150 MHz with NASA GSFC
- Testing of SET mitigation strategies planned for 4Q2007 and 1Q2008


#### ■ Total Ionizing Dose (TID)

- Results indicate suitability for vast majority of space missions
  - Stays within parametric limits beyond 200Krads (si)
  - No functional failure up to 300Krads (si)
- TID performed on each production wafer lot

All reports posted to http://www.actel.com/products/milaero/hireldata.aspx

# **RTAX-S Production Process Enhancements**





# **RTAX-S Production**



# ■ XY Wafer Location Programming

- Wafer number and die location on wafer is programmed into each unit during wafer sort
  - Assists with traceability and failure analysis

# ■ Programming Software Revision Stamping

- Silicon Sculptor Programming SW revision is programmed into device concurrent with customer design programming
  - **◆** Assists with traceability and failure analysis

# **■ Thermal Runaway Characterization**

- This test is required per wafer lot (started with 2007 fab out lots)
- 2 sample units are programmed with ELA design and characterized at oven temperature of 125 ℃, 130 ℃, and 135 ℃
- Lots that exhibit thermal runaway are scrapped
- Datasheet maximum junction temperature remains unchanged
  - **♦** Max T<sub>J</sub> = 125 °C

# **RTAX-SL Low Power Family**



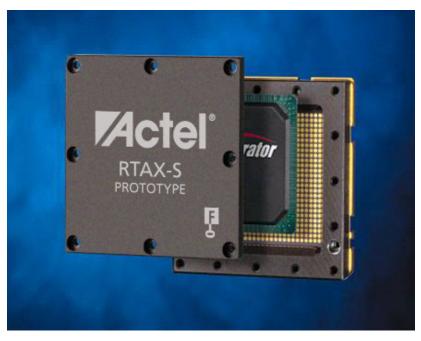
# ■ New family

- Reduced stand-by current
- New part numbers
  - Existing SMDs will be updated with new part numbers
- Applies to all members of the RTAX-S family

# **■ Stand-by current spec**

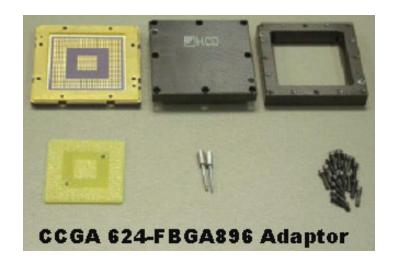
- Reduced by 50% relative to standard RTAX-S (worst case conditions)
  - ◆ For example RTAX2000SL spec is 250mA at 125 °C
- Dynamic current spec is unchanged
- Device timing is unchanged

#### **■** Schedule

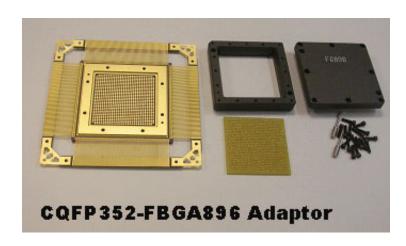

- Open for orders NOW
  - Usual lead times will apply

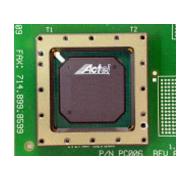
# **RTAX-S Prototyping**




# Low Cost Prototyping solution available NOW!

- Allows design activity to start immediately
- Uses commercial Axcelerator (AX) silicon in FG896 package for functional verification
- FG896 CQ352 adaptor
  - Matches CQ352 PCB footprint
- FG896 CG624 adaptor
  - Matches CG624 PCB footprint
- CQ208 can be prototyped with commercial PQ208 AX FPGAs
- CG1152 can be prototyped with commercial FG1152 AX FPGAs



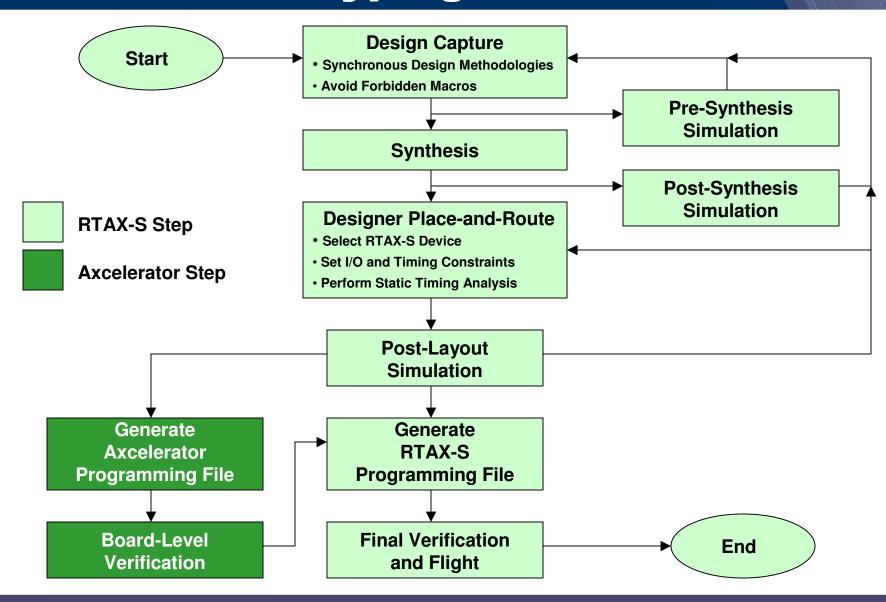


# RTAX-S Low Cost Prototyping Solutions





- Low cost prototyping solution
- CCGA and CQFP footprints available
- CCGA adaptor uses solder balls (not columns)
  - Eliminates costly column attach
  - Requires no re-layout








Fully Assembled CCGA 624-FBGA896 Adaptor

# **RTAX-S Prototyping Flow**





# Final Verification with RT Silicon




# ■ Introducing low-cost RT devices for final timing verification

# **■RT-proto FPGAs**

- RTSX-SU and RTAX-S prototypes
- RT die, in cost-reduced packages
  - Identical timing and functionality to space-flight RTSX-SU and RTAX-S FPGAs
  - Military temperature testing
  - No Mil-Std 883B processing
  - Non-hermetic lids
  - Not suitable for space-flight devices marked to indicate this
  - Not intended for qualification of space-flight hardware
- Open for orders NOW
- Shipments will start 4Q2007





# **RTAX-S Qualification**



#### ■ Mil-Std 883B Qualification

- Qualification completed June 2005
- DSCC released and certified SMDs April 2006
  - RTAX-S devices can now be ordered to the DSCC SMD "5962" number

#### **■** Enhanced Antifuse Qualification (EAQ)

- Uses design with high observability of timing changes
- 120 units RTAX1000S-CG624 tested
  - ◆ <u>6000 hours</u> HTOL completed
  - 250 hours LTOL completed

## ■ Additional Engineering Testing

- HTOL 1000 Hrs, 125°C, 173 units
- LTOL 1000 Hrs, -55°C, 77 units

## ■ No antifuse failures observed in testing to date

- Over 1.93M device hours of Actel life testing to date
- Additional 1.5M+ device hours of AX testing at Aerospace Corporation
- Overall product FIT rate calculated <7 FIT (60% confidence level, E<sub>A</sub> = 0.7eV)

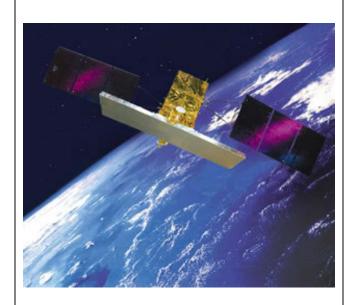
# **Actel RTAX-S Class V Plan**



## ■ Class V process flow is being established ("EV")

- Will comply with current rev of MIL-PRF-38535 (Rev H)
  - Wafer lot specific Group C life test
  - **♦** 100% Pre-Cap Source Inspection
  - Lot-specific DPA
- Actel will offer "EV" class V flow prior to official class V certification
- Expect no silicon or process differences between official QML class V and Actel "EV" devices
- Expect availability of Actel "EV" product by end 2007
- NOTE: Actel has no plans to discontinue existing B-flow or E-flow

#### ■ Will seek QML-V certification


- DSCC and Aerospace now reviewing Actel class V proposal
- Hoping for QML class V certification by end 2008

# ■ Radiation Hardened Assurance (RHA) development is also under discussion

# **RTAX-S Now in Space!**



# COSMO SkyMed 1 Launched June 2007



**Actel RTAX-S On Board** 

# Mars Phoenix Launched August 2007



**Actel RTAX-S On Board** 

# Programs Planning to Fly RTAX-S







Advanced EHF

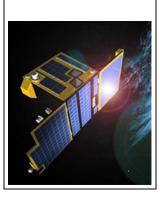



**NPOESS** 



MUOS




**GOES-R** 



COSMO SkyMed 2-4



Proba 2



Lunar Recon. Orbiter



Mars Science Lab



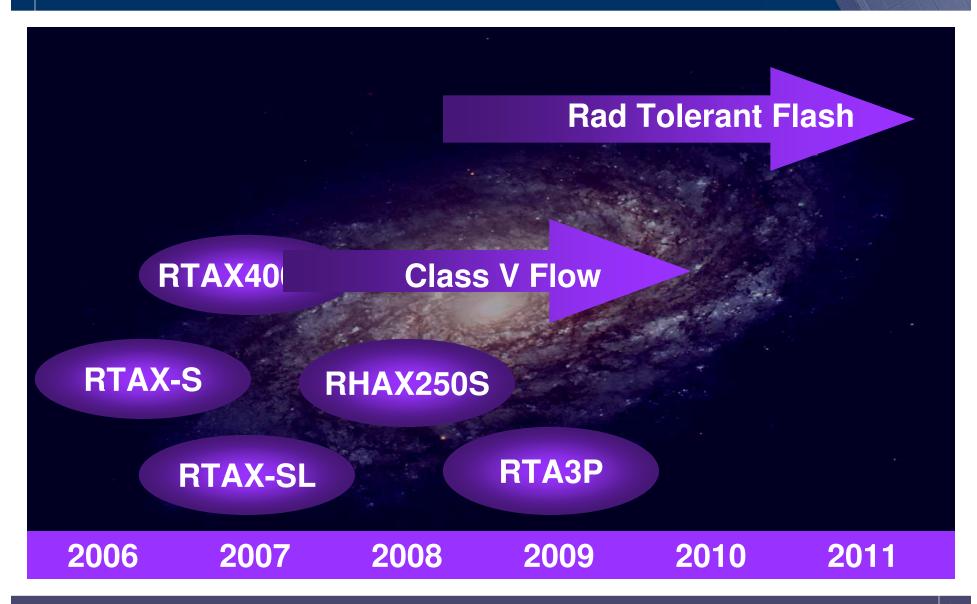
Bepi Colombo



Gaia



James Webb






# **Space-Flight FPGA Roadmap** Actel

# Roadmap for Space-Flight FPGAs



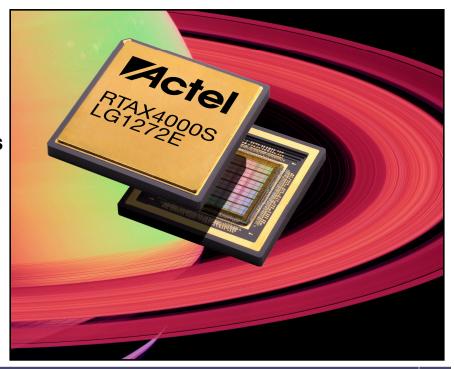


24

# **RTAX4000S Details**



#### **■** Features and Benefits


- Double the density of prior largest part now 500K ASIC gates
  - Enables further reduction of part count, board space, system mass
- 352-CQFP and 1272-CCGA/LGA packaging
- Same process, foundry and architecture as other RTAX-S parts
  - Expect the same radiation specifications
  - Expect the same high reliability

## **■** Prototyping

- Special prototyping versions
  - Features, architecture, timing will be identical to flight silicon
  - Lower cost, non-hermetic packages

#### **■** Schedule

- First silicon at Actel NOW!
- Software available NOW!
- Prototypes available NOW!
- Qualified flight units 1Q2008



# **RTAX4000S Qualification**



# ■ Preparation for qualification

- Multiple wafer lots needed to supply qual material
- All required wafer lots have completed wafer sort
- Wafers now going through assembly
  - Long assembly process: production process intended to meet future class V requirement
- Target for Mil-Std 883B qualification complete by early 2008
  - ◆ Includes 1000 hour Group C HTOL with 77 units

## ■ QML Class V

- Additional qualification activities to occur 2007 ~ 2008
  - To include additional reliability testing
    - ► Consulting with Aerospace in defining additional testing
  - ◆ Approval by DSCC, NASA and SMC/Aerospace required
  - Best case targeted for certification by end 2008

# **RHAX-S**



#### ■ Fabricated at BAE-Manassas

- RH CMOS process
- On-shore foundry
- Using RTAX-S antifuse architecture

#### **■ Easy migration to RHAX-S**

- Pin compatible with AX250 and RTAX250S
- Expect timing to be identical to RTAX250S



#### QML Class-V with Rad Hard Assurance

- Expect TID to 1 MRad parametric
- No SEL to >> LET<sub>TH</sub> 100MeV
- No configuration SEU
- Logic SEU < 1E<sup>-10</sup> upsets/bit-day
- Memory SEU < 1E<sup>-10</sup> upsets/bit-day

#### ■ Software support 1H2008

■ Flight units 2H2008

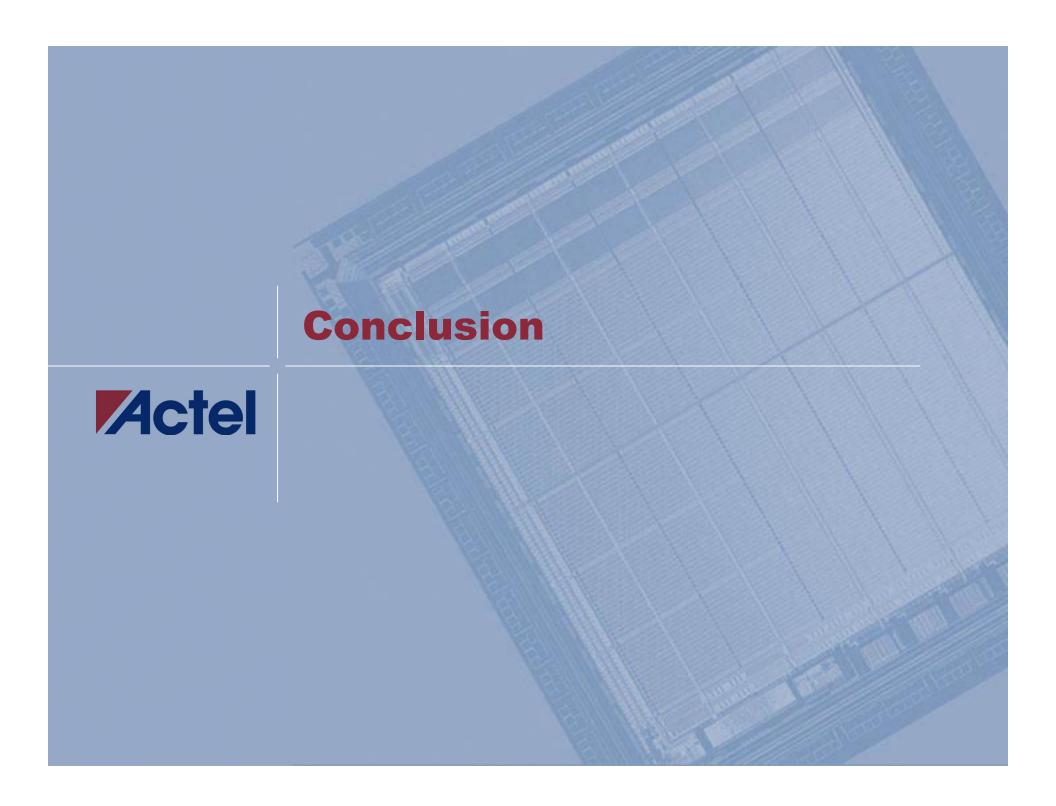
|                     | RHAX250S |  |
|---------------------|----------|--|
| Dedicated Registers | 1,408    |  |
| I/O Registers       | 744      |  |
| Total Modules       | 4,224    |  |
| RAM Blocks          | 12       |  |
| Total RAM Bits      | 54K      |  |
| Max User I/Os       | 248      |  |
| Packages            | 208-CQFP |  |

# **Space-Flight Flash FPGAs**



#### **■ RTA3P**

- Same silicon as commercial A3P family
- Radiation projections
  - No radiation-induced configuration changes
  - ◆ Immune to SEL
  - ◆ TID to ~ 20 Krads
  - Soft TMR for protection against data SEUs
  - Suitable for LEO / short duration payloads
- Flight units expected 2009
  - Mil-Std 883B qualified


|                  | RTA3PE600 | RTA3PE3000 |
|------------------|-----------|------------|
| System Gates     | 600K      | 3M         |
| Tiles            | 13,824    | 75,264     |
| RAM (Kbits)      | 108       | 504        |
| RAM (blocks)     | 24        | 112        |
| Flash (ROM) bits | 1K        | 1K         |
| PLLs             | 6         | 6          |
| Globals          | 18        | 18         |
| Package          | CG484     | CG484      |

#### **■ RT Fusion (AFRL Funding)**

Features and schedule being defined currently

#### **■ RT-G4 (DTRA Funding)**

- In architecture concept phase
- Expect flight units 2010 to 2012
- Target TID to 300 Krad
- 5M to 10M system gates



# Actel Space Heritage... Second to None!



#### Launchers / Missiles

Delta IV Sea Launch VLS

MinuteMan III

THAAD

Pegasus

Arianne Y

H-2A

D5 ENTB

Patriot

Atlas II, V

#### Commercial

Globalstar Anik F2 Intelsat IX GE-1,2, . . . 18 Echostar Telstar

Radarsat I, II CRSS / IKONOS

OrbView IndoStar

QuickBird

Hispasat Astra

WorldStar

Orion 2 KompSa

Orbcom

PanAmSat

#### Military

MightySat P81 (Classified) P59 (Classified)

HESSI Clementine

SBIRS AEHF

Myter Joint

GeoLite

WarFighter 1 TSX-5

MTI

STEP

STSS

Midcourse Space Exp

NPP / NPOESS

GPS MUOS

#### International

EnviSat Cluster II METOP Rosetta Champollion Stentor

Yamal 100

SAC Sicral

ACeS

L-Star

SOHO SILEX

Integral

Int'l Space Station

MDS N-Star MTSat

ETS VII JEM

ADEOS II

DRTS

#### Civilian / Scientific

Deep Space I

Mars Pathfinder, Surveyor Mars MER1 and 2. MRO

Mars: MSL
Contours
Seawinds
SIRTF

Messenger

Lunar Prospector

GALEX GIFTS TIROS

Landsat VII

EOS-AM1, Chem1, PM1

Cassini TDRS

Space Shuttle

Hubble Space Telescope

Windsat GOES

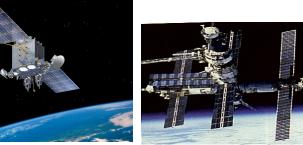
GOES AXAF

TRMM XTE

ACE SMEX

MIDEX GLAS

NEAR Timed


FUSE Genesis











# **Summary**



- Actel is committed to supporting Military and **Aerospace customers**
- New products bring added value to Space designers
  - Higher density
  - More features
  - Simplified board design
    - Single-chip
    - Live at power-up
    - Free from configuration radiation effects
  - Non-volatile AND reprogrammable
- Roadmap to future products which extend these benefits